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Series 13 General Relativity 11 Dec. 2024

13.1 In this exercise, we will examine the relationship between the intrinsic and extrinsic geometry
of a smooth spacelike hypersurface ¥ in a Lorentzian spacetime (M, g) (the same relations in
fact hold more generally for non-degenerate metrics of arbitrary signature).

Let us denote with g the induced Riemannian metric on X and with n the future directed
timelike unit normal of ¥. For any p € X, we will define the orthogonal projection operators
7t T,M — (i) and 7" : T,M — T,% by

H(X) = —g(X,n)n and 7' (X)=X —71(X)

(you can readily check that this is indeed an orthogonal decomposition; note that 7' projects
onto the tangent space of the hypersurface ¥). We will also set I'(M, 3) to be the set of vector
fields which are tangential to X, i.e.

D(M,3) = {X eT(M): X|, € T,Sfor all p z}

(note that 7+(X) = 0 at any point p € ¥ for every X € I'(M, Y)).

(a) Show that if XY € I'(M,X), then [X,Y] € I'(M, ). Show also that any vector field
Z € T'(X) on X can be extended (non-uniquely) to a vector field Z € I'(M, ) (Hint: Use
local coordinates in which 3 coincides with the level set {z° = 0}).

(b) For any X,Y € I'(M, X)), we will define along >:
VyY =71 (VxY).

Show that V is the Levi-Civita connection of the induced metric g on ¥ (assuming that
vector fields in T'(X) are extended to vector fields I'(M, X)) as in the previous question).
(Hint: Check that V satisfies the defining properties of the Levi-Civita connection.)

(c) The second fundamental form. For any X,Y € I'(M, X)), we will define along X:
K(X,Y) = g(Vxi,Y).
Show that k is a symmetric (0, 2)-tensor on X. Show also that
E(X,Y)a=7"(VxY) forall X,Y € T(M,Y),

so that B
VxY =VxY +k(X,Y)n. (1)

(c) The Gauss equation. Prove that, along ¥, the following identity holds for any X, Y, Z, W €
I'(M,%):

9(R(X,Y)Z,W) = §(R(X,Y)Z,W) + k(Y. Z)k(X, W) — k(X, Z)k(Y, W),
where R is the Riemann curvature tensor of g. (Hint: In the definition of the Riemann

curvature tensor R for g, use the decomposition (1).)
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(d) The Codazzi equation. Show that

g(R(X,Y)Z,n) = (Vyk)(X,Z) — (Vxk)(Y, Z).

13.2 The constraint equations. Let (M""! g) be a spacetime satisfying the Einstein equation

13.3

1
Ricy,, — §Rg,w = 81T},

(where T is the energy momentum tensor of some matter field; you can assume that it is
simply a symmetric (0,2)-tensor on M) and let 3" be a spacelike hypersurface of M with
future directed timelike unit normal n. As in the previous exercise, let g be the induced metric
on ¥ and k its second fundamental form (with respect to n).

(a) The Hamiltonian constraint equation. Show that, along >:
R — ||k||2 + (trgk)* = 167T (7, 7),

where R is the scalar curvature of the induced metric g and trgk = g¥k;;. (Hint:
At any point p € X, pick an orthonormal frame {e,}"_, for T,M with ey = n and
use the Gauss equation from Exercise 13.1; note that, in such a frame, Ric(e,, e,) =
—g(R(eu eo)en, en) + X0 g(Rlen, ei)es e,) and R= 37" §(R(ei, e5)ej, e:).)

(b) The momentum constraint equation. Show that, for any X € I'(M, %),
(divg(k: - (trgk)§)> (X) = 87T(1, X)
where, in local coordinates on X, (div;B); = g®V, By, for any (0, 2)-tensor B. (Hint: Use
the Codazzi equation.

Remark. The quantities p = T'(n,n) and J = T'(-,n) appearing above are the so-called mass
density and momentum density of the matter field with energy momentum tensor 7. A realistic
matter field satisfies the dominant energy condition

p = || 1l3-

You can check that this condition is indeed satisfied in the case of the energy-momentum tensor
of a scalar wave ¢ (i.e. when T = dyp @ dip — 397 (dvp, dip)g).

In this exercise, we will use the conformal compactification of Minkowski spacetime to deduce
some decay estimates for solutions to the linear wave equation, as well as global existence
results for solutions to certain nonlinear wave equations. This method was first introduced by
Christodoulou in ’86.
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(a)

Recall, as we saw in class, that, expressed with respect to the usual double-null coordinate
system (u, v, 8, ) (with w =t —r,v = ¢t + r) on Minkowski spacetime (R**! ), the map
F i (u,0,0,0) = (U(u),V(v),0,¢) with

U(u) = Arctan(u), V(v) = Arctan(u)

maps (R**1 n) conformally into a pre-compact subset of the Einstein cylinder (Rx 33, gg).
Recall that, with respect to the usual polar coordinates (T, R, 6, ¢) on the cylinder R x S3,
the metric g is the usual product metric

gp = —dT? + ggs = —dT* + dR? + sin® R(d#* + sin® 0dp?)
and the coordinates (U, V') are related to (7, R) by
T'=V+U R=V-U.
Show that
Frgp =, Qu,v) = 2cos(U) cos(V)

(we have seen this in class; it is worth redoing the calculations for what follows). Describe
the domain F(R¥™!) with respect to the (U, V.6, ¢) and (T, R, 0, ) coordinates and iden-
tify the future and past null infinities Z%, the future and past timelike infinity :* and
the spacelike infinity °. Show that F({t = 0}) is dense in the hypersurface {T' = 0} of
R x $3. Verify that the map F is smooth at r = 0 (where the double null coordinate
system breaks down; you might want to switch to Cartesian coordinates for this task).

Remark. In what follows, we will identify R**! with its image F(R3**!) in the Einstein
cylinder via the map F, so that (u, v, 0, ¢) and (U, V, 0, ¢) can be thought of as coordinates
systems on either R3™! or F(R3*1). In this spirit, if i is a function, say, on R3*1, we will
also denote by h the function h o F~1 on F(R3*1),

Let ¢ : R¥3*! — R be a smooth function satisfying
0,6 = F.
Show that the function .
p=0""¢
on F(R¥) C R x $? solves the conformal wave equation
O,,0 — ¢ = Q°F.

Remark. Note that, in general, the operator P,(f) = O, f — 71—_n1Rgf on (M"1 g) is
conformally invariant, in the sense that enTHhPezhgf = Pg(enT_lhf).
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(c)

*(f)

Assumt that ¢ : R3*! — R solves
0,0 =0
with smooth and compactly supported initial data at ¢ = 0. Show that é (defined as
before) solves
Oy — =0
with compactly supported initial data at 7 = 0. Show that ¢ is uniformly bounded

on F(R¥™) (Hint: Use the general well-posedness theorem for linear wave equations on
R x 5%). Deduce then that ¢ satisfies the following decay bounds on R3*1:

1

S T

In particular, with respect to the Cartesian coordinates, |¢| < % as t — +oo along the

null cones ¢ — |z| = const and |p(t, z)| < 72 as t — +oo for fixed .

For any function f: 8% — R, we will define its H*-Sobolev norm as follows:

k
2 - a p|2
||f||HK(S3) = ;/53 ‘V f‘gSB dvolgs,

where Vf denotes the (0, a)-type tensor with components V;1 ... V,af. Show that there
exists some constant C' > 0 such that, for any function f : R**! — R with

ﬁi[;k1+umm@ﬁ

|ee]=0

2
dr = A,

we have

1971 f o F r=ollfmss) < CA.

Let us consider an initial value problem on R x S of the form

0,,h(T, X) = F(T, X, h,dh),
(h|r=0, Orh|r=0) = (ho, h1) € Hk(gg) X Hk_1(83)7

where ' : R x 83 x R x T*(R x %) — R is a smooth function. Show that, for any
k> 2n + 2, there exists some € > 0 such that if [|o[|7x(gs) + 21/l F4-1(cs) < €, then there

exists a solution % on the whole of the domain {—7 < T < +7} C R x S3. (Hint: Aply
the local well-posedness theory for general non-linear wave equations.)

Show that the equation
0,6 = —(9:¢)?
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on R3*! when reexpressed as an equation on F(R3*1) in terms of ¢ has coefficients which
become singular at Z* (see also the comment below exercise 12.1). On the other hand,
check that the equation

0,6 = n(d¢, do) (2)

transforms in an equation which is regular (i.e. is as in part (e)) on the whole of F(R3+1).
Deduce that, for any fixed k > 2n 4+ 2, there exists an € > 0 such that for any smooth and
compactly supported initial data set (¢g, ¢1) for (2) at t = 0 satisfying

k

Z/ (1 + )0 Goli=o|? dae + Z/ (1 + |02 |1—o[* da < e,
t=0

la|=0""= la|=0

the corresponding solution for (2) exists globally (i.e. on the whole of R¥"'. (Hint: Trans-
form this to an initial value problem on R x S and use part (e).)
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