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13.1 In this exercise, we will examine the relationship between the intrinsic and extrinsic geometry
of a smooth spacelike hypersurface Σ in a Lorentzian spacetime (M, g) (the same relations in
fact hold more generally for non-degenerate metrics of arbitrary signature).

Let us denote with ḡ the induced Riemannian metric on Σ and with n̂ the future directed
timelike unit normal of Σ. For any p ∈ Σ, we will de�ne the orthogonal projection operators
π⊥ : TpM → ⟨n̂⟩ and π⊤ : TpM → TpΣ by

π⊥(X)
.
= −g(X, n̂)n̂ and π⊤(X)

.
= X − π⊥(X)

(you can readily check that this is indeed an orthogonal decomposition; note that π⊤ projects
onto the tangent space of the hypersurface Σ). We will also set Γ(M,Σ) to be the set of vector
�elds which are tangential to Σ, i.e.

Γ(M,Σ)
.
=

{
X ∈ Γ(M) : X|p ∈ TpΣ for all p ∈ Σ

}
(note that π⊥(X) = 0 at any point p ∈ Σ for every X ∈ Γ(M,Σ)).

(a) Show that if X, Y ∈ Γ(M,Σ), then [X, Y ] ∈ Γ(M,Σ). Show also that any vector �eld
Z ∈ Γ(Σ) on Σ can be extended (non-uniquely) to a vector �eld Z ∈ Γ(M,Σ) (Hint: Use
local coordinates in which Σ coincides with the level set {x0 = 0}).

(b) For any X, Y ∈ Γ(M,Σ), we will de�ne along Σ:

∇̄XY
.
= π⊤(∇XY

)
.

Show that ∇̄ is the Levi-Civita connection of the induced metric ḡ on Σ (assuming that
vector �elds in Γ(Σ) are extended to vector �elds Γ(M,Σ) as in the previous question).
(Hint: Check that ∇̄ satis�es the de�ning properties of the Levi-Civita connection.)

(c) The second fundamental form. For any X, Y ∈ Γ(M,Σ), we will de�ne along Σ:

k(X, Y )
.
= g(∇X n̂, Y ).

Show that k is a symmetric (0, 2)-tensor on Σ. Show also that

k(X, Y )n̂ = π⊥(∇XY ) for all X, Y ∈ Γ(M,Σ),

so that
∇XY = ∇̄XY + k(X, Y )n̂. (1)

(c) The Gauss equation. Prove that, along Σ, the following identity holds for anyX, Y, Z,W ∈
Γ(M,Σ):

g
(
R(X, Y )Z,W ) = ḡ

(
R̄(X, Y )Z,W ) + k(Y, Z)k(X,W )− k(X,Z)k(Y,W ),

where R̄ is the Riemann curvature tensor of ḡ. (Hint: In the de�nition of the Riemann
curvature tensor R for g, use the decomposition (1).)
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(d) The Codazzi equation. Show that

g
(
R(X, Y )Z, n̂) = (∇Y k)(X,Z)− (∇Xk)(Y, Z).

13.2 The constraint equations. Let (Mn+1, g) be a spacetime satisfying the Einstein equation

Ricµν −
1

2
Rgµν = 8πTµν

(where T is the energy momentum tensor of some matter �eld; you can assume that it is
simply a symmetric (0, 2)-tensor on M) and let Σn be a spacelike hypersurface of M with
future directed timelike unit normal n̂. As in the previous exercise, let ḡ be the induced metric
on Σ and k its second fundamental form (with respect to n̂).

(a) The Hamiltonian constraint equation. Show that, along Σ:

R̄− ∥k∥2ḡ + (trḡk)
2 = 16πT (n̂, n̂),

where R̄ is the scalar curvature of the induced metric ḡ and trḡk
.
= ḡijkij. (Hint:

At any point p ∈ Σ, pick an orthonormal frame {eα}nα=0 for TpM with e0 = n̂ and
use the Gauss equation from Exercise 13.1; note that, in such a frame, Ric(eµ, eν) =
−g

(
R(eµ, e0)e0, eν

)
+
∑n

i=1 g
(
R(eµ, ei)ei, eν

)
and R̄ =

∑n
i,j=1 ḡ

(
R̄(ei, ej)ej, ei).)

(b) The momentum constraint equation. Show that, for any X ∈ Γ(M,Σ),(
divḡ

(
k − (trḡk)ḡ

))
(X) = 8πT (n̂, X)

where, in local coordinates on Σ, (divḡB)i
.
= ḡab∇aBbi for any (0, 2)-tensor B. (Hint: Use

the Codazzi equation.

Remark. The quantities ρ = T (n̂, n̂) and J = T (·, n̂) appearing above are the so-called mass
density and momentum density of the matter �eld with energy momentum tensor T . A realistic
matter �eld satis�es the dominant energy condition

ρ ⩾ ∥J∥ḡ.

You can check that this condition is indeed satis�ed in the case of the energy-momentum tensor
of a scalar wave ψ (i.e. when T = dψ ⊗ dψ − 1

2
g−1(dψ, dψ)g).

13.3 In this exercise, we will use the conformal compacti�cation of Minkowski spacetime to deduce
some decay estimates for solutions to the linear wave equation, as well as global existence
results for solutions to certain nonlinear wave equations. This method was �rst introduced by
Christodoulou in '86.
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(a) Recall, as we saw in class, that, expressed with respect to the usual double-null coordinate
system (u, v, θ, φ) (with u = t− r, v = t + r) on Minkowski spacetime (R3+1, η), the map
F : (u, v, θ, φ) → (U(u), V (v), θ, φ) with

U(u) = Arctan(u), V (v) = Arctan(u)

maps (R3+1, η) conformally into a pre-compact subset of the Einstein cylinder (R×S3, gE).
Recall that, with respect to the usual polar coordinates (T,R, θ, φ) on the cylinder R×S

3,
the metric gE is the usual product metric

gE = −dT 2 + gS3 = −dT 2 + dR2 + sin2R(dθ2 + sin2 θdφ2)

and the coordinates (U, V ) are related to (T,R) by

T = V + U, R = V − U.

Show that
F∗gE = Ω2η, Ω(u, v) = 2 cos(U) cos(V )

(we have seen this in class; it is worth redoing the calculations for what follows). Describe
the domain F(R3+1) with respect to the (U, V, θ, φ) and (T,R, θ, φ) coordinates and iden-
tify the future and past null in�nities I±, the future and past timelike in�nity ι± and
the spacelike in�nity ι0. Show that F

(
{t = 0}

)
is dense in the hypersurface {T = 0} of

R × S
3. Verify that the map F is smooth at r = 0 (where the double null coordinate

system breaks down; you might want to switch to Cartesian coordinates for this task).

Remark. In what follows, we will identify R3+1 with its image F(R3+1) in the Einstein
cylinder via the map F , so that (u, v, θ, φ) and (U, V, θ, φ) can be thought of as coordinates
systems on either R3+1 or F(R3+1). In this spirit, if h is a function, say, on R3+1, we will
also denote by h the function h ◦ F−1 on F(R3+1).

(b) Let ϕ : R3+1 → R be a smooth function satisfying

□ηϕ = F.

Show that the function
ϕ̃ = Ω−1ϕ

on F(R3+1) ⊂ R× S
3 solves the conformal wave equation

□gE ϕ̃− ϕ̃ = Ω−3F.

Remark. Note that, in general, the operator Pg(f)
.
= □gf − n−1

4n
Rgf on (Mn+1, g) is

conformally invariant, in the sense that e
n+3
2

hPe2hgf = Pg(e
n−1
2

hf).
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(c) Assumt that ϕ : R3+1 → R solves
□ηϕ = 0

with smooth and compactly supported initial data at t = 0. Show that ϕ̃ (de�ned as
before) solves

□gE ϕ̃− ϕ̃ = 0

with compactly supported initial data at T = 0. Show that ϕ̃ is uniformly bounded
on F(R3+1) (Hint: Use the general well-posedness theorem for linear wave equations on
R× S

3). Deduce then that ϕ satis�es the following decay bounds on R3+1:

|ϕ| ≲ 1

(1 + |u|)(1 + |v|)
.

In particular, with respect to the Cartesian coordinates, |ϕ| ≲ 1
t
as t → +∞ along the

null cones t− |x| = const and |ϕ(t, x)| ≲ t−2 as t→ +∞ for �xed x.

(d) For any function f : S3 → R, we will de�ne its Hk-Sobolev norm as follows:

∥f∥2HK(S3)

.
=

k∑
a=0

�
S3

∣∣∇af
∣∣2
g
S3
dvolS3 ,

where ∇af denotes the (0, a)-type tensor with components ∇i1 . . .∇iaf . Show that there
exists some constant C > 0 such that, for any function f : R3+1 → R with

k∑
|α|=0

�
t=0

∣∣∣(1 + |x|2)|α|∂αx f
∣∣∣2 dx = A,

we have
∥Ω−1f ◦ F−1|T=0∥2Hk(S3) ⩽ CA.

(e) Let us consider an initial value problem on R× S
3 of the form{

□gEh(T,X) = F (T,X, h, dh),

(h|T=0, ∂Th|T=0) = (h0, h1) ∈ Hk(S3)×Hk−1(S3),

where F : R × S
3 × R × T ∗(R × S

3) → R is a smooth function. Show that, for any
k > 2n+ 2, there exists some ϵ > 0 such that if ∥h0∥2Hk(S3)

+ ∥h1∥2Hk−1(S3)
< ϵ, then there

exists a solution h on the whole of the domain {−π ⩽ T ⩽ +π} ⊂ R × S
3. (Hint: Aply

the local well-posedness theory for general non-linear wave equations.)

*(f) Show that the equation
□ηϕ = −(∂tϕ)

2
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on R3+1, when reexpressed as an equation on F(R3+1) in terms of ϕ̃ has coe�cients which
become singular at I+ (see also the comment below exercise 12.1). On the other hand,
check that the equation

□ηϕ = η(dϕ, dϕ) (2)

transforms in an equation which is regular (i.e. is as in part (e)) on the whole of F(R3+1).
Deduce that, for any �xed k > 2n+2, there exists an ϵ > 0 such that for any smooth and
compactly supported initial data set (ϕ0, ϕ1) for (2) at t = 0 satisfying

k∑
|α|=0

�
t=0

|(1 + |x|2)|α|∂αxϕ0|t=0|2 dx+
k−1∑
|α|=0

�
t=0

|(1 + |x|2)|α|∂αxϕ1|t=0|2 dx < ϵ,

the corresponding solution for (2) exists globally (i.e. on the whole of R3+1. (Hint: Trans-
form this to an initial value problem on R× S

3 and use part (e).)

Page 5


